
1

A Model Predictive Control Approach for
Trajectory Tracking of Quadrotors

Andrei-Carlo Papuc(), Jingwen Tang()

Abstract—We study a model predictive control (MPC) ap-
proach for trajectory tracking of quadrotors. With our design,
reference tracking and path following achieved impressive perfor-
mance. The state based disturbance rejection is also performed.
Two methods are used to construct the terminal set, and it has
been proven analytically and numerically that the system yields
asymptotic stability around the origin. In addition, different
design parameters such as prediction horizon and terminal
cost weight are investigated and the tracking performance is
compared with the unconstrained LQR method.

I. INTRODUCTION
Quadrotors have a broad spectrum of applications, including

aerial photography, surveillance, precision agriculture, and
search and rescue operations. PID and LQR control methods
are commonly used for quadrotors. In comparison, the key
advantages of Model Predictive Control (MPC) are its ability
to handle complex and uncertain systems, and account for
control and state constraints. In this paper, we design a model
predictive control method to control a quadrotor with strict
state and control constraints.

Our contributions1 are as follows:
1) We desigend a MPC controller which can perform reference
tracking and path following with short prediction horizon (less
than 10 simulation steps).
2) By designing the terminal cost and terminal set appropri-
ately [1], asymptotic stability of the origin for the quadrotor
system is guaranteed.
3) The tracking task can be performed with state based
disturbance rejection. So it is offset-free MPC.

II. DYNAMICS MODEL
A quadcopter features four distinct rotors. It has six degrees

of freedom (DoF) that describe its motion (x, y, z) and orienta-
tion (�, ✓,) in three-dimensional space. The quadrotor model
employed in this study is a minor modification of the model
introduced by [2] and [3]. Here the aerodynamic thrust drag
and aerodynamic moment drag are not considered.

As shown in Figure 1, there are four independent rotors
with different rotational speeds ⌦1,2,3,4. Each of them creates
upwards thrusts and also rotational moments. The four thrusts
Kf⌦2

1,2,3,4 offer translational acceleration as u1. The thrusts
created by Kf⌦2

2 and Kf⌦2
4 provide the torque u2 for roll

rotation ✓. The thrusts created by Kf⌦2
1 and Kf⌦2

3 provide

Andrei-Carlo Papuc and Jingwen Tang are master students at
TU Delft, The Netherlands. E-mail addresses: {a.c.papuc,
j.tang-7}@student.tudelft.nl.

1Code is available at https://github.com/andrejcarlo/mpc drone

Fig. 1. Configuration of quadrotor [3]. B and E denote the body frame and
the earth-fixed frame respectively.

the torque u3 for pitch rotation �. And the four moments
KM⌦2

1,2,3,4 along z direction offer the torque u4 for yaw
rotation . Kf and KM are the thrust coefficient and moment
coefficient respectively. More details refer to [3]. In our model,
the input vector is [u1, u2, u3, u4]T . Equation (1) shows the
relations mentioned above, where kf and kM are the thrust
coefficient and moment coefficient respectively.

2

6664

u1

u2

u3

u4

3

7775

| {z }
u

=

2

6664

Kf Kf Kf Kf

0 �Kf 0 Kf

Kf 0 �Kf 0

Km �Km Km �Km

3

7775

| {z }
=K

2

6664

⌦2
1

⌦2
2

⌦2
3

⌦2
4

3

7775

| {z }
⌦

(1)

The state vector is selected as
x =

h
x y z ẋ ẏ ż � ✓ p q r

iT
,

where �̇ ,✓̇ and ̇ are the rotational velocities in the earth-fixed
frame, which can be calculated by the rotational velocities in
the body frame p, q, and r as below.

[4]

2

64
�̇

✓̇

 ̇

3

75 =

2

64
1 sin� tan ✓ cos� tan ✓

0 cos� � sin�

0 sin�
cos ✓

cos�
cos ✓

3

75

2

64
p

q

r

3

75 (2)

The translational equations of motion given by mr̈ =h
0 0 �mg

iT
+R(�, ✓,)

h
0 0 u1

iT
with details

below [3].

https://github.com/andrejcarlo/mpc_drone

2

ẍ =
1

m
[u1(sin� sin + cos� cos sin ✓)]

ÿ =
1

m
[u1(sin� cos � cos� sin sin ✓)]

z̈ =
1

m
[�mg + u1 cos� cos ✓]

(3)

The rotational equation of motion is J !̇ + ! ⇥ J! + ! ⇥h
0 0 Jr!r

iT
=
h
�lu2 �lu3 �lu4

iT
[2]. !r is the

rotors’s relative speed: !r = �⌦1+⌦2�⌦3+⌦4. In details,
the rotational acceleration can be calculated as below, where
Ix,y,z is from quadrotor’s diagonal inertia Matrix and Ir is the
inertia for Gyroscopic moments, and l is the arm length.

ṗ =
�1
Ix

[�lu2 � Iyqr + Izqr + Irq!r]

q̇ =
�1
Iy

[lu3 � Ixpr + Izpr + Irp!r]

ṙ =
�1
Iz

[u4 + Ixpq � Iypq]

(4)

The nonlinear dynamics of the system ẋ = f(x, u) are
modelled as equations (2) to (4). Then the system is linearized
and time discretized before MPC design is applied to the
system. The operating point must satisfy the hover condition
[3] where z̈ = 0, so the operating point is selected as xop = 0
and uop =

h
mg 0 0 0

iT
. The system dynamics after

linearization and time discretization with time step ts are
shown below. The numerical values of A and B are shown
in the ??.

A = I+ ts
@f(x, u)

@x

����
x=xop,u=uop

B = ts
@f(x, u)

@u

����
x=xop,u=uop

xk+1 = Axk +Buk

(5)

III. MPC PROBLEM

In this section, we formulate the MPC problem, which is
designed to apply the optimal control input to the system
which minimizes the tracking error and control input over a
finite prediction horizon, subject to system constraints.
The quadrotor’s angular limitations impose constraints on
its states at every time step. Since we linearized our system
during the hover condition, the quadrotor’s orientation is
restricted to small angles.

"
� 1

9⇡

� 1
9⇡

#

"
�

✓

#

"

1
9⇡
1
9⇡

#

The angular velocities of the four motors are limited to a range
between minimum and maximum values. As a result, the input
values u1,2,3,4 are constrained by these limits, leading to the
following constraints[5], :

2

6664

u1 (lb)

�11.2680
�11.2680
�0.54

3

7775

| {z }
ulb

6

2

6664

u1

u2

u3

u4

3

7775
6

2

6664

45.0720

11.2680

11.2680

0.54

3

7775

| {z }
uub

where the lower bound of u1 is given by K�1uk � �K�1uop

as we linearize the system at operating point.
We form the control input space and state space as
U =

�
u 2 R4 | ulb [u1, u2, u3, u4]T uub

and X =�

x 2 R12 | � 1
9⇡ �, ✓

1
9⇡

.
State feedback offset-free MPC for reference tracking is de-
signed. At each time step, we solve the optimal control input
of such problem:

min
u

V (x0, u, yref)

=
N�1X

k=0

`(x(k)� xref, u(k)� uref) + Vf (xN � xref)

s.t. u(k) 2 U, x(k) 2 X
x(k + 1) = Ax(k) +Bu(k)

`(x(k), u(k)) =
1

2
x(k)TQx(k) +

1

2
u(k)TRu(k)

Vf (xN) =
1

2
xT
NPxN

x(0) = x0, x(N) 2 Xf (yref)

(6)

Here Q = 0.1I12 and R = 0.01I4. The P matrix in the
terminal cost is designed as the solution of DARE for this
optimization problem.
We need our system to track a given output reference yref ,
however, the measurement is influenced by an unknown
constant disturbance d with noise v as y = Cx+ d+ v. Thus
we used the Luenberger observer to estimate the unknown
disturbance d̂+ = d̂ + L(y � Cx � d̂), which updates itself
with the difference of the current estimate and the measured
value of y � Cx. Hence the system can be augmented as
below. Output matrix C extracts the position states from x
shown in Appendix A.

"
x+

d+

#
=

"
A 0

0 I

#"
x

d

#
+

"
B

0

#
u

y =
h
C I

i " x

d

#
+ v

(7)

With the disturbance estimate, we need the system
to stay at steady state xref with optimal control uref ,
hence the Optimal Target Selection problem is built to obtain
xref and uref in our MPC problem above when yref is given:

3

(xref , uref)
⇣
d̂, yref

⌘
2

8
>>>>>><

>>>>>>:

argminxr,ur J (xr, ur)

s.t.

"
I �A �B
C 0

#"
xr

ur

#
=

"
0

yref � d̂

#

(xr, ur) 2 Z
Cxr + d̂ 2 Y

(8)

They are solved online, which means xref and uref in
our MPC formulation equation (5) are actually dependent on
disturbance estimate as xref (d̂) and uref (d̂). The gain matrix
L is chosen to make sure the eigenvalues of (I�L) are inside
the unit disk so that the error of disturbance estimate (d� d̂)
converges to zero. The above OTS process is incorporated as
computeOTS function shown in algorithm 1.

Algorithm 1: Integration of solving OTS in simulation
// Compute OTS and Tset offline;
xref, uref computeOTS(yref, d̂ = 0);
Xf computeTSet(xref);
d̂ 0;
for t 2 T do

// Recompute OTS and Tset online;
if d 6= 0 then

xref, uref computeOTS(yref, d̂);
Xf computeTSet(xref);

end
u⇤ MPCsolver(xref, uref, xt);
xt+1, yt+1 system dynamics(xt, u⇤);
d̂ d̂+ L⇥ (yt+1 � C ⇥ xt+1 � d̂);

end

IV. STABILITY ANALYSIS
A. Linearized System Stability Analysis

For the linearized system dynamics shown in equations (5),
the controllability matrix

⇥
B,AB,A2B, . . . , A11B

⇤
is full

row rank, which means the system is controllable. For linear
systems with control and state constraints, if assumptions 2.2,
2.3, and 2.14 are satisfied, and the terminal set contains the
origin in its interior, by Theorems 2.19 and 2.21, the origin
is exponentially stable in XN . It is described in section 2.5.4
of book [6].

Assumption 2.2 Continuity of system and cost
As shown by equations (2) to (4), f(x, u) is continuous, with
continuous state space X and control input space U. That we
approximated the system with a discrete-time representation
does not influence its contiuous-time dynamics.
The linearized system satisfies f(0, 0) = 0. For the
reference tracking task, the origin is at (xref , uref), so
stage cost l(x(k), u(k)) shown in equation (6) satisfies that
l(xref , uref) = 0. The terminal cost Vf shown in equation
(6) is a quadratic function, it satisfies Vf (xref , uref) = 0.

Fig. 2. Illustration of the terminal set Xf [7], where xt+N is shown inside
the control invariant set.

Assumption 2.3 Properties of constraint sets
The set Z = {(x, u) | x 2 X, u 2 U} is closed and contains
the origin since both X and U is closed and contain the origin.
Because our reference state and reference control input are
chosen from Z in our OTS process shown in the last session.

Assumption 2.14 Properties of Vf , Xf and l
2.14(a) We construct our terminal cost as a quadratic function
with matrix P as the solution of discrete-time algebraic Riccati
equations, which is

P = AT
k PAk +Qk

where Ak = A+BK,Qk = Q+KTRK. The terminal costs
for the next state are given by:

Vf (x
+) =

1

2
(Akx)

T P (Akx) =
1

2
xT (P �Qk)x

while the stage cost is given by l(x, u) = 1
2x

TQkx. Thus

Vf (x
+) = Vf (x)� l(x, u)

When we construct the terminal cost in this way, we ap-
proximate the optimal cost-to-go for the constrained system
with the infinite-horizon optimal cost-to-go V uc

1 (x) of the
corresponding unconstrained system. The above equations
showed that there exists at least one control input u = Kx we
can have Lyapunov decrease of the terminal cost. To verify this
input is feasible, it is shown in session B that we construct our
terminal set in the way that for any state x in the terminal set
Kx 2 U satisfies. Thus it is verified that for all x 2 Xf , there
exists a feasible u satisfying Vf (f(x, u))�Vf (x) �`(x, u).
In addition, we construct the terminal set as a sublevel set of
Vf , so it satisfies f(x, u) 2 Xf .
2.14(b) Our Q and R in stage cost are both positive definite, so
a quadratic function constructed with the minimal eigenvalue
of Q is a K1 function satisfies assumption (b). Matrix P in the
terminal cost is also positive definite, so a quadratic function
with the maximum eigenvalue of P as the leading coefficient
satisfies.

`(x, u) =
1

2

�
xTQx+ uTRu

�
� 1

2
xTQx

� �min(Q)|x|2 = ↵1(|x|)

Vf (x) =
1

2
xTPx 1

2
�max(P)|x|2 = ↵2(|x|)

(9)

B. Constructing terminal set Xf

The terminal set constraint guarantees recursive feasibility
by enforcing the terminal states in the receding horizon prob-
lem to belong to this positive invariant set as shown in Figure

4

Fig. 3. Vertices of the 12 dimensional polyhedral approximation displayed
using parallel lines. State dimensions are represented on the horizontal axis,
while positional values of the vertices are given on the vertical axis.

2. The design of the terminal set follows a quadratic level
set approach. By constructing a sublevel set of the existing
terminal cost Vf (x) as presented in Equation 10, the hyper-
parameter constant c is introduced.

Xf = {x 2 Rn|Vf (x) c}
c > 0 s.t. Xf ✓ X,KXf ✓ U

(10)

This design choice of the ellipsoidal terminal set
transforms the problem into a quadratically constrained
one. Therefore, by switching to a QCQP (quadratically
constrained quadratic program) from a QP, computational
expense of the solver becomes higher. Since the terminal
set now is an approximation of the terminal cost by a level
set, the set is now considered positive invariant for x+ = AKx.

Computation of the hyper-parameter c is not trivial and
therefore, an optimisation method of choosing it has been
developed. To minimise the computational effort needed to
check whether Xf satisfies the set of controllable states and
actions, a polyhedral outer approximation of the ellipsoid
is used. In the case of the system’s 12 dimensional state
vector x, the approximation of the ellipsoid is going to have
212 vertices that need to be checked for state and input
constraints satisfaction. That is x 2 X, Kx 2 U for all
x 2 vertices of Pout. To compute the vertices of Pout the
semi-axis of the ellipsoid, which are equal to the eigenvectors
of the discrete algebraic Riccati solution P can be summed and
checked for constraint satisfaction. Algorithm 2 presents the
method of calculating c, and Figure 3 shows the computed 12
dimensional polyhedral approximation displayed using parallel
lines representing each dimension.

Another method of constructing the terminal set consists of
approximating the terminal set by scaling Vf (x) appropriately.
The shape of the terminal set Xf exactly matches the contour
lines of Vf because our design choice of terminal set is a
sublevel set of the terminal cost. This is also the reason why
a scaling factor can take the place of the hard terminal set
requirement. By setting a high penalty on the final state xN ,
the terminal set constraint can be eliminated by choosing a

Algorithm 2: Solving for the level set curve c

// first guess of c;
c 1.0;
while not(verts 2 X and Kverts 2 U) do

c c/1.01;
�, v eigenvectors(P);
� � · c;
// Combinations of vecs (-i,-j), (i,j), (-i,j), (i,-j);
verts polyhedra(�, v);
// Translate Tset by xref;
verts verts + xref;

end

large enough value of � � 1.0, and adding it as a factor for
the terminal cost in the optimal cost minimisation problem.
The optimal control problem becomes:

min
u

V � (x0, u, yref)

=
N�1X

k=0

`(x(k)� xref, u(k)� uref) + �Vf (xN � xref)

(11)
Where the rest of the constraints remain the same, with the

exception of the terminal set. The constraint x(N) 2 Xf (yref)
can now be omitted. The idea behind this is that for a large �
the state xN is highly penalised by �Vf . The following lemma
is proposed:

9� � 1.0 s.t. x�
N (N ;x) = �(N ;x;u�

N) 2 Xf

V. NUMERICAL SIMULATIONS

In this section, we show several numerical simulations of
the designed model predictive controller. We perform compar-
isons by altering the MPC parameters and proving asymptotic
stability. Firstly, the stability of the controller will be proved
numerically, in a reference tracking scenario, where the MPC
is tasked with reaching a single target yref, from a given starting
state. Next, a path following simulation is performed, where
the controller is tasked with following a given trajectory, using
bang-bang velocity profiles [8].

In the following subsections, the constant disturbance d in-
troduced in the OTS is set to be zero in order to better visualise
the performance of MPC without disturbance rejection. The
starting position of the quadrotor state is assumed to be at
the origin, with zero velocity and under the hover assumption,
while and the target yref is set to be [1.0, 1.0, 1.0].

A. Prediction Horizon N

First, two simulations are run for different values of N ,
first without making use of the terminal cost and terminal set
and vice-versa. As the goal of the controller is to bring the
quadrotor from the origin towards the goal of [1.0, 1.0, 1.0],
the absolute tracking error in the first states x, y, z is computed
using the euclidean distance from current position to goal.

5

Fig. 4. Absolute tracking error for a range of prediction horizons N . MPC
does not use terminal cost nor terminal set conditions here.

Fig. 5. Absolute tracking error for a range of prediction horizons N . Terminal
cost and terminal set constraints have been enabled in the optimisation
problem.

The results are presented in Figure 4 and Figure 5, respec-
tively. Comparing the two figures, major differences can be
seen. As expected, MPC without the addition of terminal set
and cost does not manage to converge for low horizons, as it
does not approximate the infinite horizon cost-to-go.

As can be observed from Figure 5 the prediction horizon
has a minor effect on the tracking error, even with the lowest
horizon, N = 5, the controller converges to the target. On the
other hand, Figure 4, increasing N has a much more significant
effect on the tracking performance, only around N = 20,
MPC without terminal cost starts to gets close to the terminal
constrained MPC. Therefore, by including an approximation of
the best cost-to-go with an infinite horizon as the terminal cost,
the optimal solution discovered by MPC is less short-sighted,
achieving the goal more quickly and with less control effort.

B. MPC vs LQR

In this subsection the performance of the proposed MPC is
used in comparison with that of the LQR controller. It’s worth
noting that the LQR is unconstrained, therefore the limits on
control actions and states discussed in the previous chapters
are not taken into account when computing the next state using
the LQR control gain K.

Looking at the tracking performance in Figure 6, it can
be seen that MPC approaches LQR with increasing horizon
N . It appears that the LQR approaches the spatial goal more
smoothly than an MPC with a lower horizon. Moreover, the
smoothness of the LQR controller can also be seen in Figure 7,
where the four inputs of the quadrotor are presented. The first
input u0 represents the total upward force of the drone, which

Fig. 6. Tracking performance between unconstrained LQR and MPC for two
N configurations.

Fig. 7. Control actions difference between unconstrained LQR and MPC for
two N configurations.

controls the movement of going up and down. From the plot,
it can be depicted that LQR starts with a smaller control input
than MPC and therefore needs to counteract less in order to
stabilise around the hover point. Similar behaviour happens
with the other control inputs.

Finally, it can be seen that after 2-4 seconds, the results of
both controllers coincide and therefore confirming asymptotic
stability when reaching the target. Tracking errors converge to
the origin and actions of MPC converge to those of LQR.

C. Terminal cost scaling �
As discussed previously, because the terminal set follows a

level set curve of the terminal cost, it can be approximated
by scaling Vf using � � 1.0. The effect of this scaling in
comparison to a non-existent Vf is simulated . To better illus-
trate the effect of increasing �, a simulation using increasing
values along with one resembling non-existent terminal cost
is performed.

In Figure 8, an MPC simulation with a low horizon of
N = 3 is unstable when eliminating terminal cost by choosing
� = 0.01, while for � � 1.0 systems are stable and converge
to the origin, meaning the target has been achieved success-

6

Fig. 8. Effect of changing the scale factor � for terminal cost Vf (x). Tracking
error decreases with increasing �, as it better steers the states towards the goal,
and approximating Xf

Fig. 9. Effect of changing the scale factor � for terminal cost Vf (x).
Experimentally showing the Lyapunov decrease of the terminal cost.

fully. Moreover, a different simulation in Figure 9 shows the
effect on the lyapunov decrease when � is increased. For
lyapunov decrease to be met, �Vf (x+)��Vf (x) �`(x, u).
In the case of � = 1.0, the two curves are on top of each other,
while for increasing factors, the separation is larger. Therefore
confirming Assumption 2.14 while the solution converges to
the ideal terminal set. The curve showcasing � = 0.1, does
not satisfy the lyapunov inequality and therefore does not
guarantee stability.

To further display the improvement of using a scaling
factor � on terminal set approximation, Figure 10 shows
the comparison of using scaled terminal cost versus using a
terminal set calculation. The large time difference is attributed
to the number of iterations that need to be computed for a
polyhedra consisting of 212 vertices.

Fig. 10. Computational effort of two terminal set construction methods. Red
curve represents terminal set based on level curve set c, while the green curve
approximates the terminal set scaling the terminal cost using �.

Fig. 11. Offset-free MPC tracking with a constant disturbance in the y-
direction. Quadrotor manages to reject disturbance and approach the goal
target.

D. Disturbance rejection
In the previous subsections, disturbance d was assumed to

be zero in order to qualitatively analyse the performance of
MPC with respect to parameter changes. Next, a simulation
with non zero disturbance can be considered. The output
of the controller is dictated by Equation 7, where y is 3
dimensional and represents the quadrotor’s position in x, y, z.
In this section, d is set to be a constant lateral disturbance in
the y direction equal to 0.5. The vector d is then going to be
equal to [0.0, 0.5, 0.0], and the task of the offset-free MPC is
to achieve the final goal whilst counteracting this disturbance.

According to algorithm 1, the OTS and terminal set con-
struction will now be solved online, meaning they will be
recomputed at every time step. This is because both of these,
depend on disturbance estimate d̂ which is iteratively updated
through the observer proposed in the MPC formulation. When
estimating d̂ a measurement error v is also introduced which
is considered as gaussian white noise. It follows a normal
distribution and it’s expectance E[v] = 0.

Figure 11 show’s the reference tracking in real time, the
quadrotor starts with an offset of 0.5 in the y-direction from
the starting point, the origin. Then, it slowly counteracts the
disturbance due to the augmented system and observer. An
a-posteriori confirmation that disturbance is rejected is shown
in Figure 12, where the norm of the error between real and
estimated disturbance converges to zero, therefore validating
asymptotic stability conditions. The jitter present towards the
bottom is due to measurement noise Finally, this is further
confirmed by Figure 13, which shows lyapunov decrease still
holds under the presence of disturbance.

E. Path following
This final subsection presents the case of trajectory tracking

of the quadrotor. Three separate parametric trajectories have

7

Fig. 12. Norm of error between estimated disturbance and real constant
disturbance. A posteriori confirmation of asymptotic stability as disturbance
is rejected through observer.

Fig. 13. Lyapunov decrease ensured during offset-free MPC simulation.

been proposed, a lissajous, a helix and a zigzag pattern respec-
tively. Each of them representing real-life use case scenarios
of quadrotor control for lighting shows or area monitoring
control. An important aspect of the following simulations is
the use of bang-bang velocity profiles, meaning the drone
accelerates to the maximum acceleration and then decelerates
to a minimum, to achieve a hovering state between each point
of the trajectory.

Figure 14 and Figure 15 show two different trajectories for
different N prediction horizons, without the use of terminal
cost. As discussed earlier, the lower the prediction horizon, the
more short-sighted the controller is and the bigger the tracking
error. This is shown by the different curves, the larger the N
the real paths close on the green dotted reference.

On the other hand, when introducing a penalty for xN with
the addition of the terminal cost, Figure 16 and Figure 17
presents the major differences. With only a N = 5 and
terminal cost added, in addition to terminal cost approximation
through � scaling, the trajectories are close to perfectly
followed. While the non-terminal-constrained MPC has very
poor performance on the zigzag pattern due to being too short-
sighted.

VI. CONCLUSION & FUTURE WORK

Our paper presents a model predictive control (MPC) ap-
proach for trajectory tracking of quadrotors, where a mathe-
matical model of the quadrotor is developed with consideration
of aerodynamic moment and drag to improve the simulation’s
real-world accuracy. The simulation results demonstrate the
quadrotor’s ability to track trajectories and avoid disturbances
while satisfying state and control input constraints with sat-
isfactory tracking error. The implementation of MPC with
terminal constraints and penalties is successful, and we have
proven the recursive local asymptotic stability of our MPC

Fig. 14. Path following a Lissajous reference in green dotted curve.
Simulation shows effect of increasing the horizon N .

Fig. 15. Path following an upward helix reference in green dotted curve.
Simulation shows effect of increasing the horizon N .

controller for trajectory tracking. Additionally, we have val-
idated all assumptions and demonstrated stability through a
confirmation of Lyapunov decrease and disturbance rejection
a-posteriori.

For future work, we’d like to study non-linear adaptive
MPC for tracking trajectories as presented in [9], to be able
to perform highly agile maneuvers, which are not possible
under the linearisation assumptions proposed in this paper.
Moreover, another interesting study is the use of quaternion-
based quadrotor [10] over euler based tracking. This can result
in better tracking errors and less computational effort.

8

Fig. 16. Path following a Lissajous reference in green dotted curve.
Simulation of N = 5 shows effect of introducing the scaling factor � for
terminal set approximation.

Fig. 17. Path following a typical zigzag drone coverage reference in green
dotted curve. Simulation of N = 5 shows effect of introducing the scaling
factor � for terminal set approximation.

REFERENCES

[1] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained
model predictive control: Stability and optimality,” Automatica,
vol. 36, no. 6, pp. 789–814, 2000. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0005109899002149

[2] H. Elkholy and A. U. in Cairo. School of Engineering
Interdisciplinary Program, Dynamic Modeling and Control of a
Quadrotor Using Linear and Nonlinear Approaches, ser. Thesis
(American University in Cairo. School of Engineering Interdisciplinary
Program). American University in Cairo, 2014. [Online]. Available:
https://books.google.nl/books?id=nZr0rQEACAAJ

[3] M. Islam, M. Okasha, and M. M. Idres, “Dynamics and control
of quadcopter using linear model predictive control approach,”
IOP Conference Series: Materials Science and Engineering, vol.

270, no. 1, p. 012007, dec 2017. [Online]. Available: https:
//dx.doi.org/10.1088/1757-899X/270/1/012007

[4] F. Sabatino, “Quadrotor control: modeling, nonlinearcontrol design, and
simulation,” 2015.

[5] C. Kanellakis, S. S. Mansouri, and G. Nikolakopoulos, “Dynamic visual
sensing based on mpc controlled uavs,” in 2017 25th Mediterranean
Conference on Control and Automation (MED). IEEE, 2017, pp. 1201–
1206.

[6] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and
Design. Nob Hill Publishing, 2017.

[7] M. S. Kamel, T. Stastny, K. Alexis, and R. Siegwart, Model Predictive
Control for Trajectory Tracking of Unmanned Aerial Vehicles Using
Robot Operating System, 05 2017.

[8] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.
[9] D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza,

“Performance, precision, and payloads: Adaptive nonlinear MPC for
quadrotors,” CoRR, vol. abs/2109.04210, 2021. [Online]. Available:
https://arxiv.org/abs/2109.04210

[10] M. Islam, M. Okasha, M. Idres, and H. Mansor, “Trajectory tracking
of quaternion based quadrotor using model predictive control,” Interna-
tional Journal of Engineering and Technology(UAE), vol. 7, pp. 125–
136, 10 2018.

APPENDIX

The numerical values of state matrix, control matrix and
output matrix are as below.

C =

2

64
1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

3

75

A =

2

66666666666666666666664

1 0 0 0.1 0 0 0 0 0 0 0 0

0 1 0 0 0.1 0 0 0 0 0 0 0

0 0 1 0 0 0.1 0 0 0 0 0 0

0 0 0 1 0 0 0 �0.98 0 0 0 0

0 0 0 0 1 0 �0.98 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0.1 0 0

0 0 0 0 0 0 0 1 0 0 0.1 0

0 0 0 0 0 0 0 0 1 0 0 0.1

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

3

77777777777777777777775

B =

2

66666666666666666666664

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0.1538 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 �3.0667 0 0

0 0 �3.0667 0

0 0 0 �1.7692

3

77777777777777777777775

https://www.sciencedirect.com/science/article/pii/S0005109899002149
https://www.sciencedirect.com/science/article/pii/S0005109899002149
https://books.google.nl/books?id=nZr0rQEACAAJ
https://dx.doi.org/10.1088/1757-899X/270/1/012007
https://dx.doi.org/10.1088/1757-899X/270/1/012007
https://arxiv.org/abs/2109.04210

	INTRODUCTION
	DYNAMICS MODEL
	MPC Problem
	STABILITY ANALYSIS
	Linearized System Stability Analysis
	Constructing terminal set Xf

	NUMERICAL SIMULATIONS
	Prediction Horizon N
	MPC vs LQR
	Terminal cost scaling
	Disturbance rejection
	Path following

	CONCLUSION & FUTURE WORK
	References
	Appendix

