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Abstract— This paper presents a new implementation of an

RRT algorithm for a quad-rotor called biased RRT, which is

compared numerically to existing sampling based algorithms.

This global path planner is then combined with MPC to create

a complete offline-online implementation and tested in multiple

simulated environments. Results are promising but also provide

various pathways for further research.

I. INTRODUCTION

The article describes the implementation of a motion plan-
ning algorithm for a quad-rotor in an indoor environment.
The use of quad-rotors in confined spaces, such as for
quick delivery of small objects in hospitals, poses unique
challenges due to the high density of obstacles present in
indoor environments.

The current state of the art employs offline-online com-
putation, classification through machine learning, sampling-
based motion planning and trajectory smoothing, achieving
real-time, kinodynamic high-speed planning for quad-rotors
in dynamic environments [2] [13]. Sampling-based planning
is used in many theoretical implementations [10] [12] and
has even been shown to work experimentally [2].

However, in high-speed dynamic environments, computa-
tion time is often a constraint for motion planning algorithms.
To address this issue, the article focuses on developing a vari-
ation for indoor environments of a 3-Dimensional Rapidly
Exploring Random Tree (3D RRT), called ’biased RRT’,
that improves computation times by increasing the sampling
rate near obstacles. This method built upon previous work
done on RRT* [9] and informed RRT* [7], and code from
[6] served as inspiration. Nonetheless, the algorithm was
implemented from scratch.

The proposed algorithm simplifies non-kinodynamic plan-
ning, a state-of-the-art method, for two reasons: time con-
straints in developing a kinodynamic algorithm and the
increased computational expense of kinodynamic RRT* as
described by [10], compared to non-kinodynamic algorithms.
However, this simplification means that the dynamics of the
quad-rotor are not incorporated. Therefore, to address this
limitation, this article also describes how the offline RRT
algorithm can be combined with an online local motion
planner: Model predictive control (MPC). This combination
creates a full-stack motion planning algorithm with offline
and online components that ensures the dynamics of quad-
rotors can be incorporated. The resulting algorithm is similar
to the one described in [11] with the addition that the
proposed method in this article includes more variation in
the shape and the placements of the obstacles. However, it
has its limitations, as described in the final chapter.

The outline of this article is as follows: First, the dynamics
of the robot model are introduced. Then, the motion planning
implementation’s specifics are discussed regarding RRT and
MPC. Subsequently, the new RRT implementation is com-
pared numerically to RRT and PRM. Additionally, the RRT-
MPC combination is tested in simulation and compared to the
original path generated by RRT. The final chapter presents
the implications of the results, limitations and opportunities
for further research.

II. ROBOT MODEL

The quadrotor model used in this work is a slight adapta-
tion of the model presented by [5] and [8] – the gravitational
force, as well as the rotor forces, are defined in reverse, as
shown by Figure 1, to conform to the later used simulation
environment. Furthermore, the drag forces used by [8] are
not considered in this initial implementation. In addition, the
following two reference frames are defined respectively, the
world frame O and the body frame C. We select this model
as it was shown to be suitable for linear model predictive
control (MPC) [8]. The following model is linearized and
time discretized in a second step.

Fig. 1. Preliminary representation of quad-rotor dynamics

The reader is referred to [5] for more detailed derivations.
The four control inputs are defined in matrix form u based on
the rotation speeds of each rotor ⌦1,2,3,4. They are respon-
sible for the upwards thrust, roll, pitch and yaw rotation,
respectively.
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Kf is the aerodynamic force constant with force Fi = Kf⌦2
i

and Km the moment constant with moment Mi = Km⌦2
i .

Furthermore, the state vector is selected as

x = [x y z| {z }
r

ẋ ẏ ż| {z }
ṙ

� ✓  p q r| {z }
!

]T (2)

where the first six elements are translational position r and
velocity ṙ in the world frame O. The latter six represent
the orientation of the drone using Euler angles where � ✓
 describe rotations in body frame C around axes x,y,z,
respectively and their time corresponding rate of change
using the angular body rates p, q, r. They relate to the Euler
rates with the transformation
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The translational equations of motion given by mr̈ =h
0 0 mg

iT
+R(�, ✓, )

h
0 0 �u1

iT
are now

ẍ =
u1

m
(sin� cos + cos� cos sin ✓)

ÿ =
u1

m
(cos� sin sin ✓ � sin� cos )

z̈ = �g + u1

m
(cos� cos ✓).

(4)

Similarly, the rotational equations of motion given by J!̇ +

!⇥J!+!⇥
h
0 0 Jr!r

iT
=

h
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iT
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where Ix, Iy, Iz are the area moments about the axes of the
body frame C, l is the arm length of the quadrotor, and
!r = �⌦1+⌦2�⌦3+⌦4 is the relative rotor speed between
clock- and counter-clockwise rotating rotors.

The non-linear state space representation ẋ = f(x, u)
can now be constructed using equations (3), (4) and (5).
Finally, this system is linearized and time discretized to be
compatible with the later presented linear MPC controller.
The operating point must satisfy the hover condition [8]

z̈ = 0, thus, the operating point is selected as
h
xT
op uT

op

iT

with xop = 0 and uop =
h
mg 0 0 0

iT
. The linearized

time discretized system with time step ts is now given by

A = I+ ts
@f(x)

@x
|x=xop,u=uop

B = ts
@f(x)

@u
|x=xop,u=uop

xk+1 = Axk +Buk

(6)

In this model, the workspace is all points in R3. Config-
uration space is R3 ⇥ S3, so q = [x y z| {z }

r

 ✓ �| {z }
↵

] where

r describes position and ↵ orientation. As quad-rotors are
under actuated with respect to their configuration there are
differential constraints on their movement, meaning they are
non-holonomic systems.

III. MOTION PLANNING: ALGORITHM

This section proposes and evaluates a new variant of
RRT*. This variation, called ’Biased RRT’, makes use of
the fact that indoor path planning often involves obstacles
in the path between the start and goal, such as when having
to go around a corner. Hence, it would seem beneficial to
sample points close to obstacles if one wants to find the
shortest path.

The biased RRT algorithm is an adaptation of RRT, so it
is similar to the formulations in [9] and [7]. However, the
random sampling of points is modified as described by the
pseudocode in Algorithm 1.

Algorithm 1 Sampling with bias in the vicinity of obstacles
1: select = random()
2: if select < � then

3: xrand  random point within radius R of obstacle

4: else

5: xrand  random point in workspace

The algorithm modification is based on two parameters:
bias � and radius R. The former describes which fraction of
samples is biased, whereas the latter describes which radius
around obstacles is sampled. A simple example in 2D is
shown in Figure 2. Table I gives a basic overview of all
variables involved in the proposed RRT algorithm.

Fig. 2. Implementation in 2D of the obstacle-biased RRT* (right) versus
normal RRT* (left)

To perform testing of the proposed algorithm, three base
algorithms were developed from scratch: RRT, optimal RRT*
as described by [9], and informed RRT* as described by
[7]. Additional ’biased’ variations of each algorithm were
also created, resulting in six variations. Finally, an algorithm
for Probabilistic Road Map (PRM) was also developed to
compare the biased RRT implementation with a different
sampling-based method.

To reduce computation times, motion planning implemen-
tations for drones sample in a lower configuration space
R3 rather than R3 ⇥ S3 and employ straight-line planning.



However, this neglects the drone’s dynamics. To overcome
this limitation, the following section describes how RRT
algorithm is combined with Model Predictive Control (MPC)
to adapt to the robot dynamics and account for the differential
constraints on motion.

Algorithm parameters

Variable Description

Startposition Starting point of graph search
Endposition Goal position to reach
Threshold Radius in which endposition is considered reached
Stepsize Distance in which new nodes are generated
End condition Condition to terminate the algorithm, can be path

length or number of iterations
Additional parameters for biased algorithm

� (bias) Fraction of points sampled around obstacles
R Radius around obstacles in which points are sampled

TABLE I. Overview of variables in the RRT algorithm.

IV. MOTION PLANNING: TIME PARAMETRIZATION

Firstly, as the MPC controller needs a time-dependent
reference trajectory, it is necessary to assign each point
p
i
i = 1, ..., N of the path generated by RRT (or any other

planning algorithm) to a point in time ti as well as a velocity
vi. This is done by connecting all p

i
to p

i+1
using bang-

bang velocity profiles: Starting from p
i
, the drone accelerates

with amax until reaching vmax and continues until it has to
break with �amax to reach vmin at p

i+1
. The orientation

and angular speed of the reference are fixed upright and zero
for all points, respectively. Finally, the resulting trajectory is
sampled with a time equivalent to the discretization time step
ts of the linearization.

We found that bang-bang velocity profiles – compared to
constant velocity profiles – ensure more minor path devia-
tions at corners while still enabling fast traversing straight
path sections.

V. MOTION PLANNING: MPC CONTROLLER

To follow the resulting trajectory after time parametriza-
tion, a linear MPC controller for trajectory tracking is used
with the linear model (6). The optimization nature of this
approach shortens the final path further, incorporating the
quad-rotor dynamics and offering the opportunity to incor-
porate local obstacle avoidance in future work. The MPC
problem is given by:

min
NX

k=0

�
(xk � xref,k)

TQ(xk � xref,k) + uT
kRuk

�
(7a)

s.t. xk+1 = Axk +Buk k = 0, . . . , N � 1 (7b)
x0 = xinit (7c)
K�1uk � �K�1uop k = 0, . . . , N (7d)
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As the rotor speeds command the quadrotor, the small-signal
input vector u must be converted to rotor speeds with (1)
resulting in ⌦ =

q
K�1(uop + u) (with element-wise square

root), explaining the constraint (7d). The angular bounds of
constraint (7e) are given by [8].

This MPC problem is solved with CVXPY [3], [1] using
the ECOS solver [4]. Figure 3 shows position as well as
translational velocity of an exemplary reference trajectory
and the path taken by the MPC controlled drone, showing
the smoothing of the path.

Fig. 3. Reference trajectory and actually taken trajectory using the MPC
controller, corresponding to room 3 from Figure 9 (only translational values
are shown).

VI. RESULTS

To evaluate the various RRT algorithms, three simple
obstacle environments were setup, as shown in Figure 4.
Spherical obstacles were used for the numerical analysis to
reduce computation times. Firstly, the biased algorithm was

Fig. 4. Environment variations that were tested. Scenario a (left) consisted
of a simple sphere placed in the direct path between start and end. Scenario b
(middle) had a small hole in a wall of obstacles. Scenario c (right) consisted
of a number of randomly generated obstacles.

evaluated in scenario a at several values for bias �, for a
given path length. This is shown in Figure 5. A value of �
of about 0.2 seems to be optimal.

Subsequently, the various algorithms and their biased
variations were tested with regards to the computation time
required for a certain path length. Results for scenario a
are shown in Figure 6. Both biased versions outperform



Fig. 5. The average computation time over 20 runs for various bias values
�, for a path length to direct path length ratio of 1.36. RRT was not evaluated
as it is not optimal and hence has very large computation times.

the unbiased ones, though the difference becomes less pro-
nounced for less optimal path lengths. In general, Informed
RRT* outperforms RRT*, but with the biased versions,
this difference is less obvious, possibly because a path is
generated so quickly that Informed RRT* does not get the
chance to show its benefits. Finally, PRM is about as fast as
the biased variant of RRT*.

Fig. 6. The average computation time over 10 samples for various RRT
variations and PRM compared to the ratio of path length to direct path
length, in scenario a. RRT was not evaluated as it is not optimal and hence
has very large computation times.

Additionally, the algorithms were tested in a scenario b
were there is a hole in a ’wall’ of obstacles. Results are
shown in Figure 7. Computation times seemed to decrease
exponentially with hole size for RRT* and informed RRT*.
Informed RRT* was generally faster than RRT, which con-
firms the results as found by [7]. In contrast, the average
time of the biased algorithms did not seem to have the
same relationship to hole size, with the curves being more
flat. Finally, PRM had a constant computation time, as it
constructs a full road map. Subsequently, various numbers of
obstacles were tested. Obstacles were generated randomly,
and the time to find a path was recorded. To account for
random variations in the generation and obtain reliable,

Fig. 7. The average computation time to find a path trough the hole over 5
samples for various RRT variations and PRM, compared to ratio of hole size
to obstacle size in scenario b. RRT was not evaluated as it is not optimal
and hence has very large computation times.

statistically relevant results, 100 trials were conducted for
each number of obstacles. The results can be seen in Figure
8. For RRT*, the time to generate a path increases with the
number of obstacles, as would be expected. But again, for
biased RRT*, this relationship does not hold.

Fig. 8. The average computation time to find a path for various numbers
of obstacles in scenario c. The obstacles were generated randomly between
start and goal nodes, and the time until a path (irrespective of length) was
found. Hence, only RRT* and its biased version were tested as informed
RRT* is the same as RRT* until a path is found.

Hence, for scenarios where there are (many) obstacles
between start and goal nodes, biased RRT* could provide
real benefits, both in terms of time to generate shorter paths
as well as time to generate a path, irrespective of length.
Additionally, the results seem to confirm the analysis done
by [7] regarding informed RRT*. In the 3D tests, biased
RRT* was also generally faster than RRT*, especially in
scenario b. This speed increase seemed to carry over to the
biased variations as well, creating a combined algorithm that
can very quickly find paths through gaps between obstacles.
Especially for crowded indoor dynamic 3D environments,
this could be beneficial to quickly recompute a path based
on an updated obstacle map.



However, this version of RRT* only considers straight
paths, and as such, does not take the dynamics of quad-rotors
into account. Hence, as discussed in the motion planning
section, after generating an offline path with ’biased informed
RRT*’, MPC is employed for online local motion planning.

So far, the analysed scenario has been kept simple so that
the different algorithm options can be analysed fairly. Now
that a selection has been made, the proposed method has been
tested in more realistic scenarios by including rectangular-
shaped obstacles. The three different rooms were defined
with three increasing levels of difficulty regarding the num-
ber of total obstacles, their height and placement. The three
different rooms have 7, 11 and 16 obstacles, including the top
and bottom plates that mimic the floor and ceiling. The walls
have been neglected for better visualisation. However, the
graph search has been defined to account for the constraints
of the walls of a room.

In room 1, the rectangular obstacles had the same height.
In room 2, they were allowed to vary in height but had the
same reference for the base, and lastly, in room 3, both the
height and the base placement were varied, thus creating
a wider range of possibilities of displacement for the drone.
The results are presented in Figure 9. In the same graphs, the
proposed path for navigating from start to goal determined
from the graph search is presented. The graph search has a
similar structure as was already presented in the simplified
scenario with one obstacle in Figure 4. The number of
sampled points, especially following the sampling algorithm
with bias in the vicinity of obstacles, was not presented in
this section to avoid cluttering the presented rooms.

Fig. 9. Representation of the three different rooms with increasing levels
of difficulty from left to right and the proposed navigation path resulting
from the biased RRT* graph search shown in dashed blue. The followed
path by the MPC controller is shown in green, being 83.4%, 72.5% and
78.4% shorter than the planned path from left to right, respectively.

Lastly, the reference trajectory created has been passed on
further to the MPC and simulated in the pybullet simulator,
with the results shown in Figure 9 as well. The path is
followed closely, and the controller smoothes the sharper
edges. Nonetheless, the maximum deviation from the ref-
erence trajectory is less than 10 [cm] and is considered an
acceptable margin for this type of application. Additionally,
the smoothing of the path optimizes its length to between
72.5% and 83.4% of the original trajectory. 2D plots of the
followed path in simulation versus the reference trajectory for
room 3 are an example in 3. Thus this method demonstrates
the ability of the proposed obstacle-driven RRT algorithm to
navigate through complex and realistic environments while
taking into account the dynamics and constraints of the quad-
rotor. These results support the potential of this algorithm for

real-world applications, such as indoor navigation for drones
and will be discussed in more detail in the following section.

VII. DISCUSSION AND FUTURE WORK
This paper presents the development of a version of RRT*

optimized for indoor environments, called biased RRT*.
The numerical analysis results showed promising benefits,
especially for quick path generation in case of a large number
of obstacles or small holes. In practice, this could be useful
for crowded, dynamic indoor environments, allowing for
quick re-computation of the global path in case of a change
in environment, newly detected obstacles, or even continuous
computation of the global path. Additionally, it is shown that
RRT could be combined with a local path planner like MPC
to create a full offline-online integrated motion planner for
quad-rotors in 3D environments.

However, this approach has limitations that suggest po-
tential directions for further research. Firstly, the numerical
analysis was performed with a limited number of trials.
Given the inherent randomness of RRT, a Monte-Carlo anal-
ysis can be performed to account for the random variations
that occur during data generation and produce statistically
relevant results.

Secondly, the developed biased RRT program does not
consider robot dynamics. It relies on a simple straight-line
metric which creates nodes based on minimum distance to
the goal, not necessarily a time-optimal path. Combining the
algorithm with a local planner such as MPC can address
this issue, but it may still result in sub-optimal reference
trajectories. Future research could focus on incorporating
kinodynamic planning and working with more complex
obstacle shapes, for example, by discretizing edges rather
than checking collisions algebraically. Another possibility
would be to evaluate how MPC or other local planners could
be optimally combined with RRT to lift the constraints on
straight paths and obstacles.

Thirdly, the code was created from scratch so it may
be sub-optimal. The effort could be put into optimizing it
because quick and efficient computation is essential for path
generation in dynamic environments.

Furthermore, the simulation in this study only considered
a scenario with a pre-generated global path combined with
MPC due to time constraints. It would be valuable to
investigate the real-time application of the biased (informed)
RRT* algorithm by testing its ability to dynamically re-
compute global paths and update them based on new sensor
data in an online manner. This would provide insights into
the feasibility and effectiveness of the algorithm in real-world
planning for quad-rotors in complex dynamic environments.

Provided that the control method was not the main focus of
this study, obstacle constraints were not included in the MPC
formulation. Future work could incorporate local obstacle
avoidance in the MPC to increase the reliability of the motion
planning stack.

Finally, evaluating the proposed RRT-MPC combination in
practice would also be a valuable addition as it would allow
a practical validation of the experimental results.
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