Interaction-aware autonomous drone racing

Andrei-Carlo Papuc, Lasse Peters, Sihao Sun, Javier Alonso Mora

Methodology

Racing Rules

- 1. Players shall pass through all the gates and not deviate from the track more than 1.5 m
- 2. The attacker (player behind) is responsible for collision avoidance
- 3. Players shall adhere to the maximum speed requirements associated with their roles
- 4. The winner is determined based on time spent as a defender

Racing Assumptions

- 1. Focus is on planning and control, not on perception
- 2. Full global knowledge of the race track
- 3. Full knowledge of own and opponents' states
- No communication between players

Objective Components

Model Predictive Control (MPC)

Goal

Address the limitations of existing MPC-based approaches, which often model opponents as dynamic obstacles without accounting for their strategic behavior.

Model Predictive Game (MPG)

To compute a local NE for this problem, we leverage MCPTrajectoryGameSolver.jl [24]. This toolchain is specifically designed for formulating dynamic trajectory games by transcribing the equilibrium conditions into a mixed complementarity problem.

Lifted Model Predictive Game (LMPG)

We explore lifted game formulations to accelerate online computation, building on the approach proposed by Peters et al. [26], and introduce a specialized training procedure tailored for racing applications.

Results

Asynchronous racing

Agents compute and execute strategies at their own independent rates, without waiting for the others

Synchronous racing

Physics waits for agents to compute a strategy and execute them in sync

Main findings

Win rate (%)

1. MPG consistently maintains a competitive advantage over MPC in synchronous mode. This is evident across different speed configurations where MPG executes strategic overtakes and maintains a dominant racing position

100 0

20

60

Win rate (%)

80

100

- 2. Induced delays and decentralized play reduces racing performance, particularly affecting MPG at higher speeds, which suffers from increased computational overhead.
- 3. By accelerating MPG via learning, we are able to achieve solve times comparable to MPC while maintaining its competitive edge in both synchronous and asynchronous modes.

Experimental setup

All vs all tournament on four tracks of varying complexity, number of gates and size

- uniformly sample number of initial states around starting positions
- first race once starting as an attacker, then race again starting as a defender; each method experiences both starting positions.

